반응형
분수 미적분과 감마함수
Math/Article2024. 5. 14. 10:10분수 미적분과 감마함수

미적분학을 배우면서 여러분은 고차 도함수에 익숙해졌을 것입니다. 첫 번째 도함수는 그래프의 기울기를 나타내고, 두 번째 도함수는 오목함을 나타내며, 이와 같은 방식으로 계속됩니다. 함수의 $n$차 도함수를 계산하는 것은 그 함수에 대해 $n$번 도함수를 구하는 것입니다. 이는 자연스럽게 이해됩니다. 그러나 분수 도함수를 구한다는 것은 무엇을 의미할까요? 오늘 우리는 분수 미적분학이라는 또 다른 미적분학의 가지를 탐구할 것입니다.분수 도함수이 표현은 여러 의미를 가질 수 있습니다. 먼저, 이를 반복적인 미분으로 생각할 수 있습니다. 함수의 $n$차 도함수를 구한다는 것은 그 함수에 대해 $n$번 미분을 수행하는 것을 의미합니다. 그러나 이는 양의 정수에 대해서만 의미가 있습니다. 이 표현을 다른 수로 확장..

분수 미적분학의 신비: 반도함수에서 시작하는 수학 여정
Math/Reference2023. 12. 16. 20:12분수 미적분학의 신비: 반도함수에서 시작하는 수학 여정

다항식과 그 도함수의 관계 탐구 기본 다항식과 그 도함수의 패턴 분수 거듭제곱과 다항식 간의 연결 분수 도함수의 개념과 가능성 반도함수의 개념 소개 분수 도함수의 수학적 타당성 분수 적분의 도입과 응용 분수 적분의 정의와 과정 다양한 분수 적분의 예시 분수 미분의 탐색 분수 미분의 정의와 방법 실제 예시를 통한 분수 미분의 적용 분수 미적분학의 비교적 해석 분수 미적분학의 비교적 의미 분수 적분과 미분의 시각화 분수 미적분학에 대한 생각 분수 미적분학에 대한 개인적 견해 미적분학의 다양한 파생 형태 소개 기본 다항식과 그 도함수의 패턴 다항식과 그 도함수 사이의 관계를 이해하는 것은 미적분학의 핵심입니다. 예를 들어, $f(x) = x^3$라는 함수를 생각해 봅시다. 이 함수의 도함수는 $f'(x) = ..

Math2021. 4. 8. 12:56조합에 분수를 넣는 다면?

youtu.be/FgVY77yIwBc 감마함수에 대해 궁금하시다면 아래영상을 참조해주세요. https://youtu.be/57OuZ2DF6cE

e는 오일러 상수가 아니다! 당신이 잘못알고 있는 오일러 상수 | 오일러-마스케로니 상수 감마 γ, 감마함수 Γ(z)
Math2020. 11. 17. 17:33e는 오일러 상수가 아니다! 당신이 잘못알고 있는 오일러 상수 | 오일러-마스케로니 상수 감마 γ, 감마함수 Γ(z)

이과생들이라면 너무나도 친숙한 상수 e, 오일러의 이름을 따서 오일러 상수라고 알고 있는 이 값은 사실 오일러가 발견한 수가 아닙니다. 흔히 우리가 쓰는 자연상수가 계산된 최초의 기록은 1618년 존 네이피어에 의해 발간된 로그표에 나와있습니다. 그러나 네이피어는 로그 계산의 과정에서 나온 결과 값만을 간단히 다루었을 뿐 e를 상수로 취급하지는 않았습니다. e가 특정한 상수임을 발견한 사람은 야코프 베르누이입니다. 그는 복리 이자의 계산이( lim(1+x)^(1/x) )다음과 같은 극한을 취할 수 있다는 것을 발견하였습니다. 베르누이는 또한 이 식이 수렴한다는 것과 그것이 특정한 값이 된다는 것을 발견하였습니다. 다들 아시다시피 그 값은 2.718… 입니다. 수렴한는 것은 예전에 증명해놓은 영상이 있으니..

반응형
image