반응형
$\text{span}(\phi) = \{0\}$인 이유
Math/Reference2025. 2. 1. 16:27$\text{span}(\phi) = \{0\}$인 이유

1. Span의 정의집합 $S$가 벡터공간 $V$에서 주어졌을 때, $S$의 span은 다음과 같이 정의됩니다.$$\text{span}(S) = \left\{ c_1 v_1 + c_2 v_2 + \dots + c_n v_n \mid c_1, c_2, \dots, c_n \in \mathbb{R}, v_1, v_2, \dots, v_n \in S \right\}$$즉, $S$에 있는 벡터들의 선형결합(Linear Combination)을 통해 생성되는 부분공간입니다.2. 공집합 \emptyset$ 의 span만약 $S = \emptyset$이라면, $S$에는 아무런 벡터도 포함되지 않습니다. 그러면 선형결합을 만들 기본 벡터 자체가 존재하지 않음을 의미합니다. 하지만, 벡터공간의 성질을 유지하면서 최소한의..

벡터와 행렬의 기본 개념
Math/Article2023. 4. 16. 19:30벡터와 행렬의 기본 개념

벡터와 행렬의 기본 개념 우리는 벡터와 행렬의 기본 개념에 대해 배울 것입니다. 이 글에서는 가독성과 SEO 최적화를 위해 적절한 소제목들을 사용할 것입니다. 1. 벡터의 이해 1.1. 벡터란 무엇인가? 벡터는 크기와 방향을 가진 양입니다. 우리가 흔히 사용하는 숫자들은 스칼라로 알려져 있습니다. 그런데 이런 스칼라 값에 방향을 더한 것이 벡터입니다. 벡터는 일반적으로 다음과 같은 형태로 표현됩니다: $$\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$ 1.2. 벡터의 연산 벡터끼리 더하거나 뺄 수 있습니다. 벡터 연산은 각 성분끼리 연산을 수행합니다. 예를 들어, 두 벡터 $\vec{a}$와 $\vec{b}$가 있을 때, 덧셈은..

선형대수학의 역사와 응용
Math/Article2023. 4. 16. 18:55선형대수학의 역사와 응용

1. 서론 우리는 선형대수학의 역사와 응용에 대해 함께 알아보려 합니다. 이 주제를 이해함으로써, 우리는 어떻게 이 수학의 지식이 발전해 왔는지와 우리 현대 사회에서 어떻게 활용되고 있는지를 살펴볼 수 있습니다. 그러면 시작해볼까요? 2. 선형대수학의 역사 2.1. 고대 선형대수학의 기원 선형대수학은 고대문명부터 시작되어 발전해왔습니다. 고대의 수학자들은 행렬과 벡터의 개념을 이해하기 시작했고, 이를 사용하여 다양한 문제를 해결했습니다. 예를 들어, 고대 중국에서는 가우스 소거법과 유사한 방법을 사용하여 선형 방정식 시스템을 해결하였습니다. 그러나 이러한 개념들이 현대의 선형대수학과 어떻게 연결되었는지 알아보겠습니다. 2.2. 현대 선형대수학의 발전 현대 선형대수학의 발전은 19세기에 이르러서야 본격적으..

선형대수학 소개
Math/Article2023. 4. 16. 17:35선형대수학 소개

1. 선형대수학이란 무엇인가요? 우리가 시작하기 전에, 선형대수학이란 무엇일까요? 선형대수학은 벡터와 행렬, 그리고 이들 간의 연산을 다루는 수학의 한 분야입니다. 이는 공학, 컴퓨터 과학, 물리학 등 여러 분야에서 광범위하게 사용되며, 실생활 문제를 해결하는데 큰 역할을 합니다. 그렇다면 우리가 왜 이 분야를 배워야 할까요? 이제부터 차근차근 알아가 봅시다. 2. 벡터와 벡터 공간 선형대수학에서 가장 기본적인 개념은 바로 벡터입니다. 벡터는 크기와 방향을 가진 객체로, 공간에서 한 점에서 다른 점으로의 이동을 나타냅니다. 우리는 이 벡터들을 수학적으로 표현하고 다루기 위해 다양한 연산을 사용합니다. 벡터 공간은 벡터들의 집합으로, 벡터 연산의 규칙을 만족하는 공간입니다. 그렇다면, 어떻게 벡터 공간을 ..

반응형
image