![파티 플래너 문제와 램지 수](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2Fc9sLkU%2FbtsJITWdq7O%2FmsxrDE63Tz3wSIhn5hPyXK%2Fimg.png)
여러분은 파티를 준비하고 있고, 초대할 손님 명단을 작성 중입니다. 파티가 즐겁게 진행되려면 몇 명을 초대해야 할까요? 여기서 핵심은 초대된 사람들 사이의 관계입니다. 모든 손님이 서로 잘 아는 사이라면 이야깃거리가 금방 고갈될 수 있습니다. 반대로, 모든 손님이 서로 모르는 사이라면 어색한 분위기가 형성될 수도 있죠. 따라서, 손님들 사이의 관계가 적당히 섞여 있는 것이 중요합니다. 그렇다면, 이 균형을 유지하면서도 파티가 흥미롭게 진행되려면 어떻게 해야할까요? 이런 질문을 던져봅시다. 적어도 3명이 서로 알거나, 3명이 서로 모르는 그룹이 생기도록 하려면 최소 몇 명의 손님을 초대해야 할까요? 파티 플래너 문제와 그래프앞서 본 문제를 파티 플래너 문제라고 부릅니다. 이 문제를 이해하기 위해서는 그래프..
![초월수의 신비와 무한의 다양성](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FcWLVMF%2FbtstyiyoUrf%2Fd1NkHtZJp0OB3D1Lhivvi1%2Fimg.png)
초월수의 미스터리 초월수가 존재해야 할 이유는 처음에는 명확하지 않았습니다. 더구나, 어떤 수가 초월수인지 증명하는 것은 굉장히 어려운 일입니다. 왜냐하면 이것은 부정적인 것, 즉 그 수가 정수 계수를 가진 다항식의 루트가 아니라는 것을 증명해야 하기 때문입니다. 1844년, Joseph Liouville은 이 문제에 간접적인 방법으로 접근하여 첫 번째 초월수를 발견했습니다. 그는 무리수 중 대수적인 수는 유리수로 잘 근사할 수 없다는 것을 발견했습니다. 그래서 그는 분모가 작은 분수로 잘 근사할 수 있는 수를 찾을 수 있다면, 그것은 다른 무언가, 즉 초월수일 것이라고 판단했습니다. 그리고 그는 그러한 수를 구성했습니다. Liouville이 만든 수 \( L \)은 다음과 같습니다. \[ L = 0.1..