![튜링 멈춤 문제와 괴델의 불완전성 정리, 그대로 멈춰라](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2Fk5QIo%2FbtsLhpzAivj%2FB5T7h6BxsyFO57R89n0Ju1%2Fimg.png)
정지 문제란 무엇인가?처음 프로그래밍을 할 때, 누구나 한 번쯤은 프로그램을 작성한 후 예상치 않게 컴퓨터가 멈추거나, 프로그램이 끝없이 실행되는 상황을 경험했을 것입니다. 여러분이 고심 끝에 작성한 코드가 실행되길 기대했는데, 프로그램이 멈추지 않고 계속해서 실행된다면 어떤 기분이 들까요? 심지어 이 프로그램이 여러분의 컴퓨터 자원을 모두 소모해 다른 작업도 방해한다면 단순히 불편함을 넘어서, 시스템 성능에 큰 문제를 일으킬 수 있습니다. 그러므로 프로그램을 작성할 때, 프로그램이 주어진 입력값에 대해 반드시 종료 될지(정지 문제), 혹은 계속해서 실행 될지(무한 실행 문제)를 미리 판별하는 것이 매우 중요합니다. 프로그램의 정지 여부를 미리 판단할 수 있다면, 예상치 못한 오류를 줄이고, 시스템의 안..
![무한의 개수 | 무한#1](https://img1.daumcdn.net/thumb/R750x0/?scode=mtistory2&fname=https%3A%2F%2Fblog.kakaocdn.net%2Fdn%2FtukfC%2FbtrbN4Yxlro%2FctMOSK5BsKPPEo0TG6UXpk%2Fimg.png)
수식으로 엄밀하게 정의되어진 내용을 말로 설명하다보니 전공자분들이 보시기에 엄밀성이 떨어지는 부분이 있을 수 있습니다. 이점 양해바라며 더 좋은 설명과 의견 있으시면 설명란과 고정댓글에 고정해두겠습니다. - 무한집합은 자기 자신의 진부분집합으로의 단사(1-1)함수가 존재하는 집합으로 정의되어 있습니다. 이 영상에서는 단사함수의 개념보다는 보다 이해하기 쉽게 1-1대응의 개념을 이용해 설명하려 하였습니다. - 무한의 개수와 기수를 혼용해서 사용하고 있습니다. 개수는 유한집합에서 주로 쓰는 표현이긴하나 직관적인 표현을 위해 개수란 표현을 사용하는 점 죄송합니다. - 가산집합의 가산 합 또는 곱은 가산입니다. 가산집합과 비가산집합을 가르는 경계는 없으나 비가산 정렬집합은 하한이 존재하므로 그 하한을 S-ome..