연속확률변수와 확률밀도함수어떤 범위에 속하는 모든 실수의 값을 가질 수 있는 확률변수를 연속확률변수라고 합니다. $a \leq X \leq b$에서 모든 실수의 값을 가지는 연속확률변수 $X$에 대해 정의된 함수 $f(x)$가 아래 세 가지 조건을 만족하면 이를 확률밀도함수라 합니다.$f(x) \geq 0$$y = f(x)$의 그래프와 $x$-축 및 두 직선 $x = a$, $x = b$로 둘러싸인 도형의 넓이는 1입니다.$$\int_{-\infty}^{\infty} f(x) dx = 1$$특정 구간에서의 확률은 다음과 같이 계산됩니다.$$P(a \leq X \leq b) = \int_a^b f(x) dx$$정규분포실수 전체의 집합에서 정의된 연속확률변수 $X$의 확률밀도함수 $f(x)$가 아래 식으로 ..
동전던지기를 100번 할 때 앞면이 50번이상 55번이하가 나올 확률은 몇일까요? 확률변수 X를 앞면이 나온 횟수라 하면 X는 이항분포 B(100,1/2)를 따릅니다. 고등학교 교육과정에서는 이항분포의 평균과 표준편차를 구해 정규분포로 근사시킨 후 X ~ N(50,5^2) 표준화공식을 이용해 확률을 구합니다. X가 50이상 55번 이하일 확률은 Z가 0이상 1이하일 확률과 같으므로 표준정규분포표에서 z=1.00인 값을 찾아보면 구하고자 하는 확률이 0.3413임을 얻을 수 있습니다. 그런데 이 확률은 정확할까요? 생각해보면 정규분포에서 확률을 구할 때 확률밀도함수를 적분하므로 Z가 0초과 1미만일 확률과 Z가 0이상 1이하일 확률은 같습니다. 이는 X가 50번 초과 55번 미만일 확률과 X가 50번이상 ..