Math2021. 5. 31. 11:08임의의 두 자연수가 서로소일 확률
https://youtu.be/U_TwBiZfXqM 임의의 고른 두 자연수가 서로소일 확률을 구할 수 있을까요? 두 자연수가 서로소일 확률을 p라 하겠습니다. 두 자연수 a,b의 최대공약수를 d라 하면 a/d와 b/d는 자연수이며 서로소입니다. 이때 a, b가 최대공약수를 가질 확률을 p(d)라 두면 어떤 자연수가 d의 배수일 확률은 1/d이므로, P(d)=1/d * 1/d * P = P/d^2 라 할 수 있습니다. 두 자연수는 항상 최대공약수를 가지므로 확률p(d)의 총합은 1이며 따라서 p는 1/d^2의 합의 역수가 됩니다. sum1/d^2 = pi^2/6이므로 임의의 두 자연수가 서로소일 확률은 6/pi^2 입니다. 참 쉽죠? 같은 방법으로 세 자연수 또는 그 이상의 자연수들이 서로소일 확률도 구할..